
NASA-CR-195243

The CommunicafionLinkandErrorANalysis (CLEAN)
Simulator

/ iti l-c'?

¢-?P

NASA GRANT NAG5-2006

July 1, 1993 -June 30, 1994

Semi-Annual Report
July 1, 1993- December 30, 1993

Submitted to:

Mr. Warner Miller
Code 728.4

Instrument Electronic Systems Branch
Engineering Directorate

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

301-286-8183

Submitted by:

William J. Ebel, Ph.D.

Frank M. Ingels, Ph.D.
Shane Crowe

Mississippi State University
Drawer EE

Mississippi State, MS 39762
601-325-3912

December 1993

oo
,O

I_. _
N m I_"
I '-

O, C N
Z _ O

Z |

!-- "_ ct-
_, ca.
gJ Z ,-'_.*.

Zw ,.¢_

'0

I-- .J _ ,,t

ZC_"

e_oEd

r.._ I.U •
I _ 0 '-

a_ Cn C_ I::
ZI-- "
I '_< I
< ..I

The Communication Link and Error ANalysis (CLEAN)
Simulator

NASA GRANT NAG5-2006

July 1, 1993- June 30, 1994

Semi-Annual Report
July 1, 1993- December 30, 1993

Submitted to:

Mr. Warner Miller
Code 728.4

Instrument Electronic Systems Branch
Engineering Directorate

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

301-286-8183

Submitted by:

William J. Ebel, Ph.D.
Frank M. Ingels, Ph.D.

Shane Crowe

Mississippi State University
Drawer EE

Mississippi State, MS 39762
601-325-3912

December 1993

Table of Contents

Abstract ... i

I. Introduction ... 1

II. Further Developments to Clean ... 7

A. Soft Decision Program Modules ... 7
1. iidsoft .. 7

2. bstysoft ... 8

3. displsft .. 8

4. harden ... 9

5. soften .. 9

6. dpcisott ... 9

7. vitsoft .. 10

8. vit3sync ... 11

B. Markov Chain Program Modules .. 11
1. markov .. 12

2. markup .. 12

3. markdown ... 12

4. markjoin .. 13

5. displmrk .. 13

6. deintmrk .. 13

C. RICE Program Modules .. 14
1. ricecomp ... 14

2. ricedcmp ... 14

3. img2seq ... 14

4. seq2img ... 14

D. Miscellaneous Program Modules .. 14
1. convencd ... 15

2. delete ... 15

3. insert ... 15

4. help ... 15

5. madd ... 16

6. pnseq ... 17

7. trellis ... 17

8. genhdf ... 18

III. Periodic Convolutional Interleaver .. 20

BIBLIOGRAPHY ... 44

Abstract

This report documents work performed for NASA Grant NAG5-2006 for the period July 1,

1993 through December 30, 1993. During this period, significant developments to the

Communication Link and Error ANalysis (CLEAN) simulator were completed and include:

1) Soft decision Viterbi decoding-

2) Node synchronization for the Soft decision Viterbi decoder

3) Insertion/deletion error programs

4) Convolutional Encoder

5) Programs to investigate new convolutional codes

6) Pseudo-Noise sequence generator

7) Soft decision data generator

8) RICE compression/decompression (integration of RICE code generated by Pen-Shu

Yeh at Goddard Space Flight Center) _
l

'9) Markov Chain channel modeling :

10) % complete indicator when a program is executed

11) Header documentation - ".; '_

12) Help utility

The CLEAN simulation tool is now capable of simulating a very wide variety of satellite

communication links including the TDRSS downlink with RFI. The RICE

compression/decompression schemes allow studies to be performed on error effects on RICE

decompressed data. The Markov Chain modeling programs allow channels with memory to be

simulated. Memory results from filtering, forward error correction encoding/decoding,

differential encoding/decoding, channel RFI, non-linear transponders and from many other

satellite system processes.

Besides the development of the simulation, a study was performed to determine whether

the PCI provides a performance improvement for the TDRSS downlink. There exist RFI with

several duty cycles for the TDRSS downlink. We conclude that the PCI does not improve

performance for any of these interferers except possibly one which occurs for the TDRS East.

Therefore, the usefulness of the PCI is a function of the time spent transmitting data to the

WSGT through the TDRS East transponder.

I. Introduction

During the past 6 months, CLEAN capabilities have grown substantially. Most of the new

programs are briefly described in Section II. Among the developments is the integration of the

RICE compression/decompression software into the simulation. In the Appendix, the theory of

RICE compression is described along with a description of CLEAN implementation. In Section

III, some results on the question of whether the PCI is really necessary for the TDRSS downlink
is discussed.

To help run the source code, the following list in given which provides a quick overview of

the required input files and the output files which are associated with each program of CLEAN.

filename(s).pdf > specified.file

id.prm >

binerrs.prm >
_] > binerrs.ID

.......... > seq.err

id.prm >

bingap.prm > bingap.exe > bingap.ID

.......... > bingap.pdf

id.prm >

blkdecod.prm >

seq.err >

blkdecod.exe > blkdecod.ID

.......... > seq.err

id.prm >

blkdeint.prm >

seq.err >

blkdeint.exe > blkdeint.ID

.......... > seq.err

id.prm >

brsterrs.prm > brsterrs.exe > brsterrs.ID

.......... > seq.err

id.prm >

bstyerrs.prm >

id.prm >

bstyerrs.prm >

bstyerrs.exe > bstyerrs.ID

.......... > seq.err

II > soRmap.dat
bstysofi.exe > bstysoft.ID

.......... > seq.sft

2

id.prm.................. >

seq.(err,sff,mrk) # 1,#2 ->

id.prm >

cvmblk.prm >

seq.err >

compseq.exe

cvmblk.exe

.......... > compseq.ID

II >

cvmblk.ID

id.prm >

seq.err >

cvmseq.exe
II > cvmseq.ID

id.prm >

blkdeint.prm >

seq.mrk >

deintmrk.exe > deintmrk.ID

.......... > seq.mrk

id.prm >

deltaest.prm >

seq.err >

deltaest.exe > deltaest.ID

id.prm >

seq.err >

displerr.exe > displerr.ID

.......... > seq.err screen dump

id.prm >

seq.mrk >

id.prm >
interactive inputs >

seq.(err, sfi,mrk) >

id.prm >

interactive inputs >

seq.(err,sft,mrk) >

id.prm >

seq.sft >

displmrk.exe

displseg.exe

displseq.exe

displsft.exe

il > displmrk.ID.......... > seq.mrk screen dump

.......... > displseg.ID

.......... > segment screen dump

I[.......... > displseq.ID.......... > sequence screendump

] > displsft.ID.......... > seq.sft screen dump

3

id.prm >
dpci.prm................ >
seq.err................. >

dpci.exe
1.......... dpci.ID

>

.......... > seq.err

id.prm >

dpci.prm >

seq.sff >
dpcisoft.exe > dpcisoff.ID

.......... > seq.sft

id.prm >

WTFF error file >
eosconv.exe

l eosconv.ID
>

.......... > seq.err

WTFF error file > eoshex.exe
II >

file screen dump

id.prm >

gapest.prm >

seq.err >
gapest.exe gapest.ID

interactive inputs > genhdKexe
I] > genhdLID

id.prm >

interactive inputs >
genmap.exe

harden.exe

II >
genmap.ID

id.prm >

seq.sft > l > harden.ID.......... > seq.err

help.exe
I[.......... > help screen dump

id.prm >

binerrs.prm > iidsoft.exe
] > iidsoft.ID.......... > seq.sft

4

id.prm >
interactiveinputs...... > img2seq.exe > img2seq.ID

.......... > userfile

id.prm >

interactive inputs > intvbin.exe > intvbin.ID

.......... > intvbin.pdf

id.prm >

seq.err >

intvpdf.exe > intvpdf.ID

.......... > interval.pdf

id.prm >

joinseq.prm >

seq.err >

joinseq.exe

madd.exe

mafilt.exe

markdown.exe

markjoin.exe

.......... > joinseq.ID

.......... > seq.err

id.prm >

interactive inputs > > madd.ID

id.prm >

mafilt.prm >

seq.err >

.......... > mafilt.ID

id.prm >

markdown.prm >

seq.mrk >

.......... > markdown.ID

.......... > seq.err

id.prm >

markjoin.prm >

seq.mrk >
.......... > markjoin.ID

id.prm >

markov.prm > markov.exe > markov.ID

.......... > seq.mrk

id.prm >

markup.prm >

seq.mrk >
markup.exe > markup.ID

.......... > seq.err

id.prm.................. >

seq.err >

nrzmdec.exe
1 > nrzmdec.ID

.......... > seq.err
- j

id.prm >

seq.err >

nrzmencd.exe >nrzmencd.ID

.......... > seq.e_

id.prm >

pnseq.prm > pnseq.exe
] > pnseq.ID.......... > sequence.pn

id.prm >

interactive mputs > quantpd£exe > quantpdf.ID

.......... > user pdf file

interactive inputs > queryseq.exe
II > header.(extension)

id.prm >

interactive Inputs > rawhdr.exe I..........>rawhdr.ID

interactive inputs >
[ricecomp.exe II > ricecomp.ID

interactive inputs > IIficedcmp.exe
II > ricedcmp.ID

id.prm >

interactive inputs > seq2img.exe > seq2img.ID
.......... > user image file

interactive inputs > seqarc.exe > errseq.arc

6

id.prm.................. >

interactive inputs > seqtrunc.exe > seqtrunc.ID

.......... > truncated seq

id.prm >

interactive inputs > sequnarc.exe > sequnarc.ID

.......... > seq.err

id.prm >

interactive inputs > seterrs.exe > seterrs.ID

......... > seq.err

id.prm >

sync.prm >

seq.err > rl sync.exe > sync.ID

interactive inputs > > syncpb.log

interactive inputs >

id.prm >

interactive inputs >

syncppn.exe

[trellis.exe

.......... > syncppn.log

.......... > trellis.ID

.......... > trellis.pit

id.prm >

viterbi.prm >

seq.err >

vithard.exe > vithard.ID

.......... > seq.err

id.prm >

viterbi.prm >

seq.err >

vitmark.exe > vitmark.ID

.......... > seq.err

id.prm >

viterbi.prm >

seq.sft >

vitsoft.exe > vitsoft.ID

.......... > seq.err

II. Further Developments to Clean

This section briefly describes additional capabilities which have been added to CLEAN.

The capabilities have been divided into two main sections. In Section A, additional error

sequence manipulation programs, which represent system components, are briefly described and
in Section B, programs written to evaluate theoretical formulas are briefly described.

A. Soft Decision Program Modules

To more accurately reflect the receiver, programs were written to simulate soft decision

values which are output by the demodulator for the real TDRSS. These programs involve "soft"
sequence generation programs as well as programs to mimic the receiver DPCI and Viterbi
decoder on those soft values.

1. iidsoft

This program generates a "soft" error sequence with independent and identically
distributed soft event occurrences. By definition, an ERROR sequence MUST refer to hard

decision data at the demodulator output. In contrast, this program simulates 3-bit soft decision

data which would be output by a soft decision demodulator, assuming that the signal transmitted

corresponds to the transmission of a binary zero. The algorithm involves using the channel error
probability, input by the user through the parameter file, to construct the conditional Normal

densities for the random variable which would be input to a multilevel thresholder to determine

the 3-bit soft decision output. For convenience, it is assumed that the received signals are

identically +1,-1 for a binary 1,0 respectively and that the decision thresholds, used to construct

the 3-bit soft decision data numbers, are located at equi-spaced distances around + 1 and -1

inclusive. Then, the 3-bit binary number assigned to each level begins with 000 for the range

below - 1 and end with 111 for the range above + 1. In summary, the thresholds are arbitrarily
chosen as follows:

3-bit value Binary rep. Low Thresh.
_T

High

111 infinity 3/2

110 3/2 1

101 2 I/2

100 1/2 0

3 011 0 -1/2

2 010 -1/2 -1

1 001 - 1 -3/2

0 000 -3/2 - infinity

Note that the first binary value to be output is the least significant digit for the soft value.
These threshold values were taken from Heller and Jacobs, "Viterbi Decoding for Satellite and

Space Communication," IEEE Transactions Communication Technology, vol. COM 19, no. 5,
October 1971, pp. 835-848.

8

To determinethesoft decisionvaluesfor eachsignaloutput,theprobability of occurrence
for eachlevelmustbefoundandsubsequentlyusedto statisticallydeterminethesequence
output. Theprobability thatthe i(th) softvalueoccursis storedin SoftProb(i)which canbe
foundusingtheQ(x) function. As implementedbelow,thecumulativeSoftProbis storedin
SoftProb,that is, SoftProb(i)representstheprobability thatsoft value i, or i-1, ..., or 0 occurs.
This is doneto optimizeexecutionspeed.It is possibleto thresholdthesoft sequencewith a
thresholdof 0 to performharddecisiondemodulation.

Thisprograminputsparametersfrom anASCII datafile with defaultname'BinErrs.prm'
andoutputsthe"soft" error sequenceto datafile with defaultname'seq.sft'. In addition,various
statisticsareoutputto anASCII datafile with defaultname'IIDSoft.ID', whereID is athree
letter identifier for thecurrentrunwhich is input from file 'ID.prm'.

Theprogramis runbyeditingtheparameterfile 'BinErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.sft' file which contains a sequence (in packed format) with

independent and identically distributed soft values. It does not matter whether the output file

'seq.sft' exists or not. If it exists, it is overwritten without a prompt to the user.

2. bstysoft

This program generates a "soft" error sequence with bursty errors. The method for

generating the soft values is discussed in the previous section for the iidsoft program

documentation. The application here is identical except that two SoftProb functions are required:

one when a burst is occurring and one when no burst is occurring.

A discussion of the method by which the burst length and burst interval statistics are

generated can be found in the documentation of program bstyerrs.for.

This program inputs parameters from an ASCII data file with default name 'BstyErrs.prm'

and outputs the soft sequence to a data file with default name 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'BstySoft.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BstyErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.sft' file which contains a "soft" error sequence (in packed format). It
does not matter whether the file 'seq.sft' exists or not. If it exists, it is overwritten without a

prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow

bursts to overlap. The user must take care to specify input parameters so that the probability of

overlapping burst is negligible.

3. displsft

This program displays the soft sequence found in file 'seq.sft'. It is assumed that the 3-bit

soft values stored in seq.sft are in the SSPS (Soft Sequence Packed Symbol) format.

4. harden

This program reads in 3-bit soft decision data and performs hard decision thresholding.
This will effectively reduce the length of the sequence file by a factor of 3.

The program reads in the soft sequence by blocks and performs hard decision thresholding

on each block and then writes the modified block back out to the 'seq.err' file. The program

outputs several statistics to the user screen as well. Note that the sequence is read in from file

'seq.sft' (SeqType=2), with 3-bit soft data and is stored in file 'seq.err' (SeqType=l), with hard
errors.

Executing the program causes the 'seq.sft' file to be read which contains a soft value

sequence (in packed format). The 'seq.sft' file must exist prior to the execution of this program.

5. soften

This program maps binary data into soft values out of the soft decision demodulator. The

method used to perform this mapping is to combine the data sequence with an already existing

soft sequence. Consider a particular data bit and the corresponding soft value from the soft
sequence. If the data bit is a zero, then the soft value which would occur at the demodulator

output remains the same. However, if the data bit is a 1, then the soft value which would occur

at the demodulator output is the bit complement of the corresponding soft value. The bit
complement can be achieved by taking 8 and subtracting the basel 0 equivalent of the soft value.

For a discussion of how soft values are generated at the demodulator output, see Section 1 above.

This program inputs the data from file 'seq.dat' and the soft sequence from file 'seq.sft'

and stores the result in the 'seq.sft' file. In addition, various statistics are output to an ASCII

data file with default name 'Soften.ID', where ID is a three letter identifier for the current run

which is input from file 'ID.prm'.

Executing the program causes the 'seq.sft' file to be modified. Before running this

program, sequences 'seq.dat' and 'seq.sft' must exist.

6. dpcisoft

This program performs Periodic Convolutional Deinterleaving of the soft sequence found

in file 'seq.sft'. It is assumed that the channel symbols corresponding to those values have
already been interleaved using an (Ntaps,M) periodic convolution interleaver. The method used

to implement the function of the periodic convolutional interleaver is a series of formulas as

described below. These functions are applied to a portion of the 'seq.sft' array which is stored in
a ring buffer.

The method used to implement the deinterleaver involves constructing a Tap offset array

which gives the offset for the soft sequence index to deinterleave next, based upon the tap

position of the deinterleaver commutator. The Cycle offset is then used to determine the offset

for the current commutator cycle number which is also used to determine the soft sequence index
to deinterleave.

Note that there is a problem deinterleaving the end of the 'seq.sft' file due to the sequential

nature of the algorithm. The DPCI soft sequence file is truncated to eliminate the "don't cares".

10

This programinputsparametersfrom anASCII data file with default name 'DPCI.prm'

and outputs the soft sequence to data file with default name 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'DPCISoft.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DPCI.prm' and selecting the appropriate

parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'seq.sft' file which contains an soft sequence (in packed format) with deinterleaved

values. The 'seq.sft' file must exist prior to the execution of this program.

7. vitsoft

This program performs soft decision Viterbi decoding assuming ANY data sequence is
transmitted. The Viterbi decoding algorithm assumes that the trellis begins at the all zero state

for the first received code symbol. The end of the decoding process does not terminate with

flush bits. Instead, steady state Viterbi decoding is performed up to the end of the data seq.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and inputs the soft sequence from file 'seq.sft' and outputs the decoded data sequence to data file

with default name 'seq.err'. In addition, various statistics are output to an ASCII data file with
default name 'VitSoft.ID', where ID is a three letter identifier for the current run which is input

from file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.err' file which contains an error sequence (in packed format) with the

decoded error sequence. The 'seq.sft' file must exist prior to the execution of this program.

There are several assumptions associated with the implementation and output of this

program.

1) The path with the maximum probability metric at the i(th) Trellis stage is used to find the

decoded bit for the output

2) It is assumed that the convolutional encoder is either rate 1/2 or rate 1/3. It is straight

forward to extrapolate this program to accommodate a rate 1/n encoder. It should also be

possible to modify this program to accommodate a rate m/n encoder.

The Viterbi algorithm, as implemented here, updates the Trellis by iterating through each

of the states at the next stage. The probability metric for each path entering a given state are

computed and the survivor is kept while the other sequence is discarded. In case of a tie, a coin

is flipped (via a Uniform RV in [0,1]) to determine the survivor. The survivor is identified by

updating the MLStateTrace array. This army contains the state of the previous Trellis stage

which connects to the given state being processed. For example, suppose that we are now

processing the next stage in the Trellis, we first consider state 1 at the next stage. After

investigating the probability metric for the two possible paths entering state 1, we find that the

survivor path came from state 3 of the previous Trellis stage. Therefore, MLStateTrace(i, 1) = 3

where i is the stage index.

11

To preventoverwritingtheMetric array,two Metric arraysarealternatelyprocessedfor
eachTrellis stage.This is why the algorithm performs two Trellis stage updates for each main

loop. In the first Trellis stage update, the metrics are found in array MetricA and the new metrics

are stored in MetricB. In the second Trellis stage update, the metrics are found in array MetricB
and the new metrics are stored in MetricA.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage. Therefore, if there are N trellis states, then there are only 2*N possible paths

between two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1

and 2 enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely

define the steady state trellis.

8. vit3sync

This program operates like the vitsoft program. However, this program mimics exactly

what happens in the real LV7017C hardware which is documented in an interoffice
Memorandum written by James Wang and Wei-Chung Peng of LinCom with subject,

"Simulation and Validation of Viterbi Decoder", TM-8719-05-09 and TM-8707-06, 01 March

1989. The vitsoft modifications performed to construct this program are as follows.

1) The metrics which are accumulated are arbitrarily chosen as described in an interoffice

Memorandum mentioned above. This program mimics exactly what occurs in the real LV7017C
hardware.

2) The metrics are monitored to determine whether node synchronization is lost. If node

synchronization is lost, then the alternate bit pairings of the received data is chosen in an attempt

to resync. The metrics are monitored again to determine whether synchronization has been
established.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and inputs the soft sequence from file 'seq.sft' and outputs the decoded data sequence to data file

with default name 'seq.err'. In addition, various statistics are output to an ASCII data file with

default name 'Vit3Sync.ID', where ID is a three letter identifier for the current run which is input

from file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.err' file which contains an error sequence (in packed format) with the

decoded error sequence. The 'seq.sft' file must exist prior to the execution of this program.

B. Markov Chain Program Modules

Most processes which are used to manipulate and communicate binary data from a source

to an end user can be modelled accurately by a Markov Chain. This includes differential coding,

error correction coding, filtering, non-linearities, and more. In short, it should be possible to

model the TDRSS downlink using a Markov Chain with an appropriate number of states. It is

only necessary to determine the number of states and the transition probabilities. Estimating the

12

transitionprobabilitiescanbeaccomplishedusingtheBaum-Welchalgorithm [4]. Although the
Baum-Welchalgorithmhasnotbeenimplementedin thesimulation,programswhich involve
Markov Chainshavebeenincorporatedinto thesimulationto meetthisgoal. Theseare
describedbelow.

1. markov

This program generates a sample state sequence which is representative of a Markov Chain

with known transition probability matrix. Each state is assigned a number from 0 to N-1 where
N is the number of states.

This program inputs parameters from an ASCII data file with default name 'Markov.prm'
and outputs a state sequence with default name 'seq.mrk'. In addition, various statistics are

output to an ASCII data file with default name 'Markov.ID', where ID is a three letter identifier

for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'Markov.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.mrk' file which contains the state sequence It does not matter

whether the output file 'seq.mrk' exists or not. If it exists, it is overwritten without a prompt to
the user.

2. markup

This program reads in a state sequence and performs hard decision thresholding for the
upper bound case.

The program reads in the state sequence by blocks and performs hard decision thresholding

on each block and then writes the modified block out to file 'seq.err'. The program outputs

several statistics to the user screen as well. Note that the sequence is read in from file 'seq.mrk'

(SeqType=5), with Markov Chain states and is stored in file 'seq.err' (SeqType=l), with hard
errors.

Executing the program causes the 'seq.mrk' file to be read which contains a state

sequence. The 'seq.mrk' file must exist prior to the execution of this program.

3. markdown

This program reads in a state sequence and performs hard decision thresholding for the
lower bound case.

The program reads in the state sequence by blocks and performs hard decision thresholding

on each block and then writes the modified block out to file 'seq.err'. The program outputs

several statistics to the user screen as well. Note that the sequence is read in from file 'seq.mrk'

(SeqType=5), with Markov Chain states and is stored in file 'seq.err' (SeqType= 1), with hard
errors.

Executing the program causes the 'seq.mrk' file to be read which contains a state

sequence. The 'seq.mrk' file must exist prior to the execution of this program.

13

4. markjoin

This program generates the joint event probabilities for joints events associated with

received codewords in the state seq. It is assumed that each state in the received sequence

corresponds to a code symbol. The algorithm involves partitioning the state sequence into

n-state blocks, where n is the code blocklength, called the received codeword state. The number

of each state which occurs within a received codeword state constitutes a single sample point for

the joint state event. The number of each joint event is accumulated and the total for each is

divided by the number of received codeword states to determine the empirical probability. The

only problem with this procedure is defining an efficient method for identifying each joint event.

The method used in this program is to define an array, Joint(i), in which all joint events would be

stored in a unique location. If the Markov Chain has S states, then there are [(n+S+l) choose

(n]) number of ways that a specific number of each state occurs in the received codeword state.
Ifa received codeword state has nl, n2, ..., nS number of occurrences of states sl, s2, ..., sS,

respectively, then the Joint array location which contains this joint event is computed on the fly

as given in subroutine StateIndex.

This program inputs parameters from an ASCII data file with default name 'MarkJoin.prm'

and inputs the state sequence from data file with default name 'seq.mrk' and outputs the joint

probabilities to ASCII data file with default name 'MarLloint.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'MarkJoin.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. The 'seq.mrk'

file must exist prior to the execution of this program.

5. displmrk

This program displays the sequence found in the file 'seq.mrk'. This file must be of type

SeqType = 5 (state).

6. deintmrk

This program performs block deinterleaving of the state sequence found in file 'seq.mrk'.
It is assumed that the channel symbols corresponding to those states have already been

interleaved using an (C,R,m) block interleaver. The deinterleaver groups every m state seq

values together and deinterleaves them as a group. The method used to implement the function

of the block interleaver is to read in a block of the state seq and to use a series of formulas to

perform the block deinterleaving. These formulas are described in the blkdeint program [5]

This program inputs parameters from an ASCII data file with default name

'DeintMrk.prm' and outputs the state sequence to data file with default name 'seq.mrk'. In

addition, various statistics are output to an ASCII data file with default name 'DeintMrk.ID',

where ID is a three letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DeintMrk.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.mrk' file which contains an state sequence with deinterleaved states.

The 'seq.mrk' file must exist prior to the execution of this program.

14

C. RICE Program Modules

In an effort to investigate the interaction between RICE decompression and errors which

may result from decoding failure, several programs were written to perform RICE

compression/decompression and convert image sequences to/from the sequence format required

by CLEAN. These are described here.

I. ricecomp

This is the same code received from Pen-Shu Yeh at Goddard Space Flight Center with

slight modifications to work with CLEAN. The code reads in an image in JPL format and

compresses it into a format defined by Pen-Shu ¥eh.

2. ricedcmp

This is the same code received from Pen-Shu Yeh at Goddard Space Flight Center with

slight modifications to work with CLEAN. The code reads in an image in JPL format and

compresses it into a format defined by Pen-Shu ¥eh.

3. img2seq

This program converts the Jet Propulsion Laboratory's image file format (ASCII) to the

CLEAN code data file format (packed). Both, the .img and .seq, filenames are specified by the

user on the command line. This program works for RICE-compressed or uncompressed files.

First the program reads the image header and writes it to the sequence file's header. The

program determines whether or not the file is compressed by reading character*2 chl in the

image header. Then the appropriate conversion routine is selected and executed.

4. seq2img

This program converts a sequence file to an image file in the Jet Propulsion Laboratory's

format. The sequence file must contain the proper image header data in the sequence header so

that the image file will be constructed correctly.

Ifchl character in the image header is 'CI' the image will be written in the compressed

image format. If ch 1 is 'U0' the image file will be written in the non-compressed format. If ch 1

is neither of these, the program will end.

Portions of this code are adapted from JPL's source code.

D. Miscellaneous Program Modules

Several additional programs were developed to accommodate convolutional encoding,

cycle slips in the demodulator which can cause insertion errors and deletion errors, as well as

other programs described below.

15

1. convened

This program performs convolutional encoding on a binary data sequence. The data is

read in from file with default name 'seq.dat' and the output is stored in a file with default name

'codeseq.dat'. The encoder structure information is found in parameter file 'Viterbi.prm' (see

vithard for a description of these parameters).

Executing the program causes the file 'codeseq.dat' to be created or modified. Before

running this program, sequence 'seq.dat' must exist.

There are no assumptions associated with the implementation or output of this program.

2. delete

This program simply deletes user specified soft values from a soft sequence. This process

mimics bit deletions in the channel due to receiver PLL cycle slips. This program only works

with soft decision sequences.

This program inputs the soft values to be deleted from data file with default name

'delete.dat' and applies those deletions to sequence found in file 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'Delete.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

Executing the program causes the 'seq.sft' file to be modified. Before running this

program, data file 'delete.dat' and sequence 'seq.stt' must exist.

3. insert

This program simply inserts user specified soft values into a soft sequence. This process

mimics bit insertions in the channel due to receiver PLL cycle slips. This program only works

with soft decision sequences.

This program inputs the soft values to be inserted into the data file with default name
'insert.dat' and inserts those into the sequence found in file 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'Insert.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

Executing the program causes the 'seq.stt' file to be modified. Before running this

program, data file 'insert.dat' and sequence 'seq.sft' must exist.

4. help

This program simply puts help type information to the user screen concerning the usage of

the multiple executable programs which make up the CLEAN simulator. The information shown
on the user screen is as follows:

16

*** Communication Link and Error ANalysis ***

*** (CLEAN) ***

*** A communication link simulation tool ***

*** ***

*** Developed for: ***

*** NASA Goddard Space Flight Center ***

*** Developed by: ***

*** Mississippi State University ***

*** William J. Ebel, Ph.D. ***

*** Drawer EE ***

*** Mississippi State, MS 39762 ***

*** 601-325-3912 ***

* Simulation description:

This simulation tool consists of a collection of separate executable

programs which perform various operations found in the TDRSS downlink

receiver. The simulation is based upon sequences which are expected to occur

at the receiver threshold device output (hard or soft decision). Complex

systems can be simulated by executing the appropriate programs, corresponding

to the operations found at the receiver, in the proper order.

........................... SIMULATION EXECUTABLES

........ => EVENT GENERATORS <=

BinErrs: Binomial error generator

BrstErrs: Burst error generator

BstyErrs: Bursty error generator

SetErrs: User set error seq

BstySoft: Bursty Soft generator

IIDSoft: Indep. Ident. Distr. Soft

Markov: Markov Chain State generator

..... => MARKOV CHAIN PROGRAMS <=

MarkDown: Conv. to lower bound errors

MarkUp: Conv. to upper bound errors

MarkJoin: Estimate joint event prob

.......... > INTERLEAVERS <=

BlkDeint: Block deinterleaver

DeintMrk: Block Deint for M.C. States

DPCI: Error seq PCI Deinterleaver

DPCISoft: Soft seq PCI Deinterleaver

---=> ERROR CORRECTING DECODERS <

BlkDecod: Block, Reed-Solomon decoder

VitHard: Viterbi hard decision decode

VitMark: Viterbi decode w/ Markov est

VitSoft: Viterbi soft decision decode

.... => SYNCHRONIZATION PROGRAMS <=

Sync: Seq.err Sync star. gen.

SyncPb: Theoretical sync star. gen.

SyncPPN: Theoretical sync star. gen.

.......... => MISCELLANEOUS <

GenHDF: Gen. Hamming Distance Fnc.

GenMap: Soft value mapping gen.

PNseq: Pseudo-Noise sequence gen.

RawHdr: Show raw header (for debug)

Trellis: Trellis generator

......... => NRZM UTILITIES <

NRZMDec: NRZM decoder

NRZMEncd: NRZM encoder

---=> RICE COMPRESSION PROGRAMS <=

RICEComp: RICE compression (Pen-Shu)

RICEDcmp: RICE decompression (Pen-Shu)

Img2Seq: Image to seq.err cony.

Seq2Img: seq.err to Image conv.

............ > STATISTICS <

DeltaEst: Delta burst stat. est.

GAPEst: GAP method burst stat. est.

BinGAP: Binomial theor. GAP distr.

IntvPDF: Empirical interval distr.

IntvBin: Interval distr, for bin errs

CVMBIk: CVM bin test by block

CVMSeq: Error seq CVM bin test

............. > UTILITIES <

Ascii:

CompSeq:

DisplErr:

DisplSeg:

DisplSeq:

DisplSft:

DisplMrk:

EOSconv:

EOShex:

Harden:

JoinSeq:

MAdd:

MAFilt:

QuantPDF:

Queryseq:

SeqArc:

SeqTrunc:

SeqUnarc:

convert a PDF file to ascii

Compare sequences

Displ seq.err to screen

Display sequence segment

Display sequence to screen

Displ seq.sft to screen

Displ seq.mrk to screen

EOS data conversion

EOS data display in HEX

Hard threshold soft values

Join two sequences

Exclusive OR two error seq

Moving Average filter of seq

Quantize PDF

Query sequence header

EOS sequence archiver

Seq length truncator

Sequence unarchiver

5. madd

This program modulo adds two binary data sequences. Each file name is specified by the

user throught the keyboard. Both sequence files should be in packed format. The results of the

modulo addition are stored in second file in packed format. If the two files are different lengths,

the extra length is truncated. The program also outputs the error sequence error density based on

the assumption that a ' 1' corresponds to an error.

17

Thisprogramwaswrittenwith theintentionto moduloaddthechannelinput to thechannel
outputto yield thechannelerror sequence. The error sequence is stored in file with name
SeqFileName2.

6. pnseq

This program generates a psuedo-noise (PN) sequence. The implementation used here is

that of Figure 8-6, pg. 380 of"Digital Communications and Spread Spectrum Systems" by
Ziemer and Peterson.

The input parameters (data sequence length, generator polynomial order, and random

number generator seed) are specified in a file called 'pnseq.prm'. Only orders of 7, 10 17, 20,

25, or 28 are allowed. Any orders other that these will cease program execution. The maximum

length sequence for each generator polynomial order is listed in 'pnseq.prm'.

The shift register in the PN sequence generator is initialized with random binary values.

The data sequence is stored in packed form in 'seq.dat'

7. _e_s

This program generates and displays for the user the convolutional encoder trellis diagram
along with useful parameters. The program also generates a plot file which contains line

segments which will physically form the shape of the trellis.

This program was derived from the Trellis generation subroutine constructed for the

Viterbi decoding program.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage. Therefore, if there are N trellis states, then there are only 2*N possible paths

between two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1

and 2 enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely
define the steady state trellis.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and outputs the trellis structure along with useful parameters to an ASCII data file with default

name 'Trellis.ID', where ID is a three letter identifier for the current run which is input from file
'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'.

18

8. genhdf

This program performs convolutional encoding of a binary sequence for a single generator

function. For now, the program will iterate through all possible generator function for a given

constraint length, and generate the "Hamming weight sequence" function, which is the Hamming

distance for all possible input sequences, for each generator function.

The method used to construct the unique input sequences is described next. Valid input

sequences are all those possible which do not have a string of K consecutive zeros in them where

K is the constraint length of the code. These sequences can be generated as follows:

1) Construct the following prefix code:

C = { 1, 01,001, 0001, ..., 0K'21 }

2)

3)

where 0 K2 denotes K-2 consecutive zeros. This is a prefix code because no vector in the

set can be constructed from a group of other vectors

Construct the first sequence as the first prefix code vector 1.

Construct all subsequent sequences as combinations of the prefix code vectors as follows:

a) Number the prefix code vectors as follows:

Number Prefix Code
.........................

0 I
1 01
2 001

_,, ,-"

l 0'1

K-2 ""0K'21

Note that there are K-1 prefix code numbers.

b) Now let an integer counter, j, iterate from 0 on up

c) Consider the j(th) integer counter value. Suppose it has a base K-1 representation

j =j0* (K-I) ° + jl * (K-I) t + j2* (K-l) 2 + ...

where each coefficient is a number in the range 0,1,...,K-2. Next construct the base

K-1 number by concatenating the coefficients together:

j base 10 = [... j2 jl j0] base (K-l)

Now construct the j(th) Generator Hamming Distance function sequence by starting

the sequence with a 1 and by concatenating the prefix code sequence for the base K-1

coefficients in the order from least significant to most significant. That is, the input

sequence is constructed by

sequence = ... (j2 PC) G 1 PC) GO PC) 1

19

wherePCstandsfor Prefix Code.

Theonly problemwith this formulationis thatit excludesinput sequencesof theform 1_for
integeri greaterthan2. However,only input sequencesup to agiven length(MaxSeqLength)
areconstructed.Therefore,the input sequencesof theform 1'for i=l,...,MaxSeqLengthare
constructedfirst andplacedat thebeginningof thesequence.This completes the description of
how the encoder input sequences are constructed.

This program was derived from the Trellis generation program constructed for the Viterbi
decoding program.

The Trellis is defined Via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage. Therefore, if there are N trellis states, then there are only 2*N possible paths

between two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1

and 2 enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely
define the steady state trellis.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and outputs the trellis structure along with useful parameters to an ASCII data file with default

name 'GenHDF.ID', where ID is a three letter identifier for the current run which is input from
file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'.

20

IlL Periodic Convolutional Interleaver

Recently, the issue as to whether the PCI is necessary in TDRSS has surfaced. Two

documents (presentation slides) have addressed this issue, one by Warner Miller [1] and one by

Ted Kaplan and Ted Berman [2] which give conflicting results. Below, the main points and

results of the documents are outlined and it is shown that the results are not comparable due to

the fact that the channel models used are fundamentally different.

In document [1], OMV test results are presented to illustrate why the PCI is not necessary

for the TRMM communications link. Bursts of a fixed length were input into the Viterbi

decoder, one at a time, both with and without the PCI present to determine the effect (number of

erred bits output by the Viterbi decoder). The main points of the document are as follows.

1) Viterbi output bursts are not extended. This is not entirely true. If a burst (in terms of

code symbols) of length B is input to the Viterbi decoder, then generally a burst (in BITS)

of length B+M is output where M is a number less than the memory length of the decoder

(32 for the LV7017). However, for the length of bursts considered for the OMV tests

(>50), the slight increase in burst length is not noticeable.

2) A (255,223,16) Reed-Solomon code can correct 16 code symbols or (at least) 628
consecutive bit errors. This is correct.

3) The OMV tests show that without the PCI, almost all the error bursts output by the

Viterbi decoder can be corrected. When the PCI is present, synchronization loss causes

error bursts at the Viterbi decoder output of > 1000 bits which cannot be corrected by the
RS decoder.

4) The OMV test results conflict with the CLASS analysis performed by Ted Kaplan.

In document [2], CLASS (it is assumed) is used to generate performance results which

show that the PCI is necessary. The noise environment is modeled by Poisson o_curring RFI

pulses which affect 15 code symbols (30 binary symbols) at the Viterbi decoder input. The duty
cycle of the RFI is taken to be .018 and thermal noise and False Loss of Viterbi Decoder

Synchronization (FLDS) are ignored. The main points of the document, for the no PCI case, are
as follows.

1) Without the PCI, the Viterbi decoder can't correct code symbol bursts of length 15. In

fact, it is stated that the bursts at the Viterbi decoder output are longer than those at the

input. See item (1) above. It is my belief that in principle, Document [1] agrees with this
assessment.

2) With the PCI, the errors at the Viterbi decoder output are not present unless PCI

synchronization is lost. In essence, the error probability at the Viterbi decoder output

with the PCI is much less than the Viterbi decoder output without the PCI. It is my belief

that in principle, Document [1] agrees with this assessment.

3) Therefore, it is concluded "that there should be an even larger difference after RS

decoding (see Figure 1)". Figure 1 of Document [1] shows that the error probability at

the RS decoder output is much worse without the PCI. This Figure is the source of the
conflict between the OMV test results and CLASS results.

21

There are several important differences between the analyse# which make comparison
impossible. These are outlined here.

1) CLASS does not incorporate synchronization into the decoder performance analysis.

This is obviously a critical issue which must be considered. Long burst lengths will occur

at the Viterbi decoder output when PCI synchronization (and less so, Viterbi node

synchronization) is lost.

2) The OMV test results only consider bursts of long length but don't consider the Poisson
occurrence time of bursts in the real channel. Previous studies have shown that the

S-band downlink is characterized by noise bursts which occur with Poisson statistics [3].

This is important because the duty cycle (taken to be 0.018 by Ted Kaplan in [1]) will

result in more than one burst per interleaved Reed-Solomon code block. A duty cycle of

0.018 with bursts of length 30 will cause an average error free guardband between bursts

of 30/0.018= 1667 binary symbols. Therefore, one RS interleaved block which contains

10,200 binary symbols will result in approximately 10,200/1667=6 noise bursts. Each

noise burst causes roughly 30 binary symbol errors, equivalent to roughly 30/8=4 RS

code symbol errors. Therefore, 24 RS code symbols (24"8=192 binary symbols) will be
in error on average due to the RFI. At first, it appears that these will be corrected with no

trouble, however, because the occurrence times are Poisson for the RFI pulses, it is

possible for some RS interleaved blocks to contain many more code symbol errors. It is

unclear whether performance will be sufficient, in any case, the Poisson occurrences of

the RFI bursts cannot be ignored. It is my belief that the RS decoder will have no trouble

correcting the bursts which typically occur within one RS interleaved block. Note that

the RS decoder does not allow error propagation due to the block nature of the decoder.

The TDRS East environment is another matter, however. This environment is

characterized by an interferer with a duty cycle of 11% or so. It is unclear whether the
system, with or without the PCI, can handle this interferer.

The Communication Link and Error ANalysis (CLEAN) simulator developed by me at

MSU can help resolve the problem. Poisson occurring bursts can be generated to simulate the

' RFI in the real link and a soft Viterbi decoding program, which emulates node synchronization

exactly like the LV7017C hardware, can be applied. This work is currently in progress along
with the RICE compression work.

Preliminary results suggest that the PCI is not necessary for the TDRSS West environment.

22

Appendix

TheRICE CompressionAlgorithm:TheoryandCLEAN Implementation

23

1.0 ABSTRACT

In communication systems such as satellite data links, it is necessary to keep the

bandwidth small due to limited channel and�or transmitter complexity. One way to alleviate the

problem is to use digital data compression algorithms which reduce the number of bits

required to represent a given amount of information. The RICE compression algorithm is

frequently used in data links transmitting digital images from satellites to earth [1-5].

This paper summarizes RICE compression theory and simulation for a noiseless

environment. The RICE simulation presented is an application specific to the Voyager H

spacecraft, and is integrated into CLEAN, an existing software package. In conclusion,

questions are presented for research relating to noisy simulations.

2.0 INTRODUCTION

The goal of all data compression schemes is to take source data and perform a reversible

mapping which averages fewer output bits per symbol than the source. In general, the source

data is first divided into words (symbols) of equal length and ordered in terms of decreasing

symbol probability. Then, the most probable words are assigned codewords which are short

relative to the corresponding source symbols. Similarly, the least probable words are assigned

codewords which are long in length relative to the source symbols. Ideally, the average codeword

length will approach the source entropy (entropy is the minimum number of bits/symbol required

to represent the source by using any code).

Many compression schemes, such as the Shannon-Fanno code, perform this mapping by

table look-up. An example of a Shannon-Fanno code [6] is shown in Table 1. The source

24

symbolsin Table 1 are 3 bits long and the average codeword length is

or 2.75 bits.

(i)

Source Symbols Probability Codeword Codeword Length

X 0 .2500 00 2

Xt .2500 01 2

X2 .1250 100 3

X3 .1250 101 3

X4 .0625 1100 4

X 5 .0625 1101 4

X_ .0625 1110 4

X7 .0625 11|1 4

Table 1. Example Shannon-Fanno Code.

The constructs of the Shannon-Fanno code are not important. The point being made here is that

the Shannon-Fanno code mapping, as well as many other code mappings, is based on a priori

table look-up. In reality, the source symbol statistics vary., so the symbol probability ordering

in Table 1 can change and data expansion can occur. Therefore "table look-up" codes fall short

when the "least probable" symbols occur too often. Thus these types of compression algorithms

only work for a certain entropy range. Figure 1 illustrates performance for a typical "table look-

up" code with different source entropies. Note this particular code performs best for source

entropies from 2.5-4.5 bits/symbol.

25

Avoruge Codeword Length (bltsleample)
8

!

5

4

2

!
! !

0 1 2 8 4 5 6

8ourco Entropy (blts/eample)

Figure 1. Averajze Performance for a Typical Shannon-Fanno Code.

The RICE compression algorithm is an adaptive code that employs ideas similar to the

Shannon-Fanno code. RICE contains several different compression routines that each perform

well under a different entropy range [4,5]. Basically, the RICE algorithm reads a block of source

symbols, determines which compression routine is best suited for this block of data, encodes the

symbols, and transmits the symbols along with a few ID bits which identify the compression

routine used on this particular block. Therefore, the RICE compression algorithm can make

adjustments for varying source symbol statistics.

This paper discusses the general RICE compression theory, a RICE application, and a

26

computer simulation. Also, questions dealing with RICE decoding in a noisy environment are

presented.

3.0 THE RICE COMPRESSION ALGORrI'HM

Let the sequence of any symbols, x,, x 2.... , x_., be denoted as X={xi}. Then the entropy,

HfX), is defined as

H(X) _ -_ p11Og2pl bits�sample (2)

where Pi is the probability that xi occurs. The entropy of a data source is the theoretical limit for

how many (actually, how few) bits/symbol are required to represent it. Practically all data

sources have time-varying entropies. The biggest advantage of RICE compression is that it can

employ many types of compression algorithms, which collectively perform well over a wide

range of entropies. The average performance plot for each RICE compression option looks like

Figure 1, except each option is good over a different entropy range. The term, "RICE

compression", does not imply the number or type of algorithms within it. This paper will only

cover a few of them.

3.1 PREPROCES SING

No matter which code option is used, RICE's f'rrst task is to order the symbol probabilities

for each block. This is accomplished by reversible preprocessing which usually removes

correlation from the symbols and orders them using a priori knowledge. From now on, it is

27

assumed that the following condition is true for each block of samples:

Po > Pl > Pz "" > Pq-1 (3)

where q is the number of symbols output from the source. Reversible preprocessing is

summarized in Figure 2. The actual preprocessing method used will depend on the application.

I
I A Prmo_,,I]n¢o.

' 1I
I
I

I Re_vgr

I
I
I
L--

Pr.obat=X.zty I

Gr. _4,r.'_,O

Figure 2. Reversible Preprocessing for RICE Compression.

Once the condition in (3) is true or well approximated, RICE can choose which

compression option is best for the current block. Let the compression options be denoted as Wi,

where i is an identifier. The qJ, identifiers used in this paper are identical to those in [5].

One code option is an obvious, trivial case. If the source symbols happen to be completely

random, there is no need to encode them. An attempt to code them would most likely result in

data expansion. Therefore, the simplest compression option is

tU3[X] =X (4)

3.2 Wt: FUNDAMENTAL SEQUENCE

The simplest, non-trivial compression option is the fundamental sequence. The

28

fundamental sequence codeword operator is defined by

fs[i] - 000. , .0001 (5)

where i is the magnitude of an input symbol and the output is i zeros followed by a "I".

Obviously, the length of a fundamental sequence codeword is

i_ = f<fs[i]) = i+i bits (6)

Encoding J symbols as fundamental sequence codewords isdenoted by

ill__IX] = FS[X] = fs[x I] *fs [x2] *'"*fs [x#] (7)

where * implies concatenation and _F, is called the fundamental sequence of X. The length of

a fundamental sequence is

J J
(8)

No matter how many bits each symbol contains, _F t would be powerful if lower

magnitude symbols occurred most. This would be the case for highly-correlated data because

the symbols output from the preprocessor (de-correlator) would be low in magnitude. Image data

is a good example of this situation, since pixels on the same scan line are highly correlated [5].

The performance plot for the fundamental sequence is contained in Figure 4. Note that FS[X]

performs well over H(X) of 1.5 to 3.0 bits/sample.

3.3 W2 AND _Po: CFS[X] AND Cl_'[X]

Let Y be a J-symbol sequence. Given a positive integer e, define the extended sequence

29

of Y to be Y concatenated with enough zeros to form a sequence whose length is a multiple of

e. The extended sequence of Y is written as

(9)
yi = Ext e [y] = (yly_...y,) , (y,÷ly,.2""y2,) *"'* (yj_lyjO0""O)

There are ['J/e]groups of e symbols in Ext'[Y], so there are e['J/eqsymbols totalin ExtC[Y]

where [J/e]isthe smallestintegergreaterthan or equal to J/e.

As an example, let Y by the 29 bit sequence

y = Ii010011010100111011010010111 (I0)

Then the 3rd extensionof Y is given as

yi = Ext3[y] = (ii0)*(i00)*(ii0)*(i01)*(001) * (11)

(110) * (II0) • (100) * (101) • (if0)

where one dummy zero was added to complete the ['29/3q= I0m symbol of Y'.

Compression options_}'2and _{'0attempt to remove any redundancy thatmay remain in

the fundamental sequence. Clearly,from (5),itmay be likelyzeros in the fundamental sequence

are more likelythan ones. Define the second compression option as

tp2 IX] = CFS[X] - cfs [xI] *cfs Ix2] *"" (12)

where cfs means code the 3"_extensionof X mapped according to Table 2 [5].The performance

plot for CFS[X] is contained in Figure 4. Note that CFS[X] performs best for H(X) of 3 to 4.5

bits/sample.

30

Input 3-tup_ a Ou_ut Codeword:c_[a]

000 0

001 100

010 101

100 110

011 11100

101 11101

110 11110

111 11111

Table 2. 8-Word Code, cfs[o0.

It is clear from Table 2 that when zeros are most likely in FS[X], compression will occur. It is

possible that ones are more likely in FS[X]. Therefore, define the next compression option to

be

¥ o [x] - cP_ [x] - c_ [x_],c?_ [x2] ,..- (13)

where c"f"_" comes from Table 2 with the left column complemented. The performance plot for

CI_[X] is contained in Figure 4. Note that CI_'[X] performs best for H(X) of 0 to 1.5

bits/sample.

3.4 THE BASIC COMPRESSOR

All of the RICE compression options mentioned thus far collectively perform close to

source entropies which range from 0 to 4.5 bits/sample. A block diagram for the four basic code

zossozdumoo!seqoql 2o _i_uoI oq..L "[g] olqe.i u! pou!!lno SOlrU uo!s!oop GI oql slsoi_ltns oo!'¢I

E

¢_) {(Ix].__b}u_ _-(ix]= _b

1_ql qons uosoqo oq 1i!,_ (II 'XI.mOID "oouonb'os sTq] .m3 posn

uo.udo uo, sso_dtuoo oq_ 'g zo '_ 'I '0 _up. uosazdoz zoqtunu k.reu!q lt.q-_ pmuuo_uoo _ s T(II azoqm

(_) [X]aZ _*GI = [X]D_/ = [X] _ rh

s_ pomuop s! qo!q,_

"suo.uoO .msso.mmoo o!s_ :too4 "g o.m,q!H

C _ _x'3

H

[]SA

X

,,:msso._dtuo_ o!s_q,, oq] osudmo_ s,o_r,.mdo opoo osokn 'zo_o_o.L "t_ a.m_!::I m. u,,aoqs s! suo.udo

32

would be

qBC[X]), = 2+L(_ re[X]) bits�sample (16)

J J J

where J is the number of samples. The rightmost term in (16) is assumed to be the shortest of

the code options.

Operator Decision Condition for FS [X] Length

Wo [] F <_ 3 hJ/2J

•F,[] 3 tJ/2J < F < 3J

_'2[] 3J < F < 3(m-2J)

W3[] F > 3(m-2J)

Table 3. Basic Compressor Decision Rules; F=FS length, J=no. samples, m--raw sequence lengfla.

The overhead associated with the basic compressor is 2/3 bits/sample, the length of the

ID bits. It appears that the overhead could be minimized by keeping J large. However, a large

block size would give the basic compressor fewer chances to choose the best code option and

the rightmost term in (16) may not be optimum. Studies by Spencer and May [7] suggest that

the best block size is 16 to 25 samples.

The performance plot for the basic compressor is shown in Figure 4. The trivial option,

v?3, has been left out of the plot. This option would be a horizontal line at q, the number of

bits/sample output from the source.

33

4

3

2

Average Codeword Length (bitelsample)

Ol
0 1 2 3 4

8ource Entropy (bits/sample)

¢
!

!
i
I
!
!

I !

' CFSICQMP[X])
I

,-_ FSIXl !
i i

i i

-X,- CFSIXi i
_.. ,J

HIX)
i

J

5 6

Figure 4: Basic Compressor Performance.

3.5 Ws: BLOCK-BY-BLOCK BASIC COMPRESSOR

Let Y be an N sample sequence of samples partitioned into rl smaller blocks such that

r = y_,r2,...,z, (17)

and each Yi is composed of Ji samples. Therefore

N -- _ J_ {is)

The block-by-block Basic Compressor is the adaptive version of (14). That is, the block-

34

by-block BasicCompressorcanchangeID's in the middle of a sequence.Define the block-by-

block compressoras

S [Y] -_ 4 [Y!] *_ 4 [I"2] *'"*_ 4 [Yn] (19)

3.6 Wi_,, W,t: SPLIT-SAMPLE ENCODING

There are many other compression algorithms that could be incorporated into RICE

compression. The only other algorithm covered in this paper is split-sample encoding. Split-

sample encoding recognizes when (and how many) least significant bits (LSB's) in a source

sample are random. When this is the case, these LSB's are output "as is" and the remaining

most significant bits (MSB's) are compressed. When more LSB's are random, the source entropy

is higher, and split-sample encoding performs better. Therefore, split-sample encoding works well

for high entropies.

Let Mo* be a sequence of N preprocessed samples of n bits/sample such that (3) is

satisfied. Define the split-sample operator (not the encoder) as

ss;' cM;1= c2o

where L, ° is the N sample sequence consisting of k LSB's of each sample of M0 °, and Mo w is

the N sample sequence consisting of the n-k MSB's of each sample of Mo*. The other subscript

and superscript parameters will not be used, but are retained to stay consistent with [5]. A typical

sample of this structure is illustrated in Figure 5.

35

n bl"cs

Figure 5. Typical Split-Sample Symbol,

Define the spUt-sample encoder as

4' t._:[M_] = r-,°*qJ_ [_o -k] (21)

where i is the compression option used to encode the MSB's, n is the number of bits/sample in

the original sequence, k is the number of LSB's, and n-k is the number of MSB's.

The decision criterion for i and k depends on the options available to the RICE

compressor. Decision criterion for several options is given in [4,5]. In this paper, only the

decision rules for i=l will be examined.

Since i=l, the only decision to make is k. Obviously, k will be chosen such that

k

Clearly,

Let the sequence, M0*, be represented in terms of its samples

M_ = ml,m2,...,m N

and let each sample be represented in terms of binary digits as

(23)

(24)

36

n-1

-- °-" --E bJ2' (25)

where bj"_ is the MSB and bj° is the LSB. Substituting into (8), the length of the fundamental

sequence of MSB's is

Notice in (26) that the exponent on the two reflects the truncation of the k LSB's. Rice [5] shows

that when (26) is modified and substituted into (23), the length of the split-sample sequence is

._ N -k)
L{t_ 1,k[/_]} = 2 Fo+_.(1-2 +Nk

(27)

where F0 is (26) with k=0. Therefore, the RICE compressor must choose k such that (27) is

minimized.

Finally, def'me _t', as

t_ 1_ [Mg] : k'*t_ _.k [I%°]

where k' is the binary representation of k. Note the similarities between (27) and (14).

(28)

4.0 RICE SIMULATION

Any compression option could be used for i in (21), including the Basic Compressor.

Rice [3] has shown that i=l only provides good compression for the Voyager image entropy

range. Therefore, this simulation only incorporates q"l_.

CLEAN, a communications simulation package developed by Mississippi State University,

37

is capable of incorporating RICE compression into many communication system configurations.

The RICE portion of CLEAN has been adapted from existing code developed by the Jet

Propulsion Laboratory (JPL).

The image file format input to the RICE simulator is described in Figure 6. Figure 6a

nl,I
Lines

2 Bytes
4_ _ 32 Bytes

I chl I nil [nbt I nlr Intyl I nty21n_y31 oh2 J

_)

I I I
l

i

I I I I

] plxet

' ' ' I I I

b)

Figure 6. Image File Format.

shows that the first record in the file contains image header data. The header data is defined as

38

follows:

chl:

nli:

nbl:

nbp:

nlr:

nty(3):

ch2:

"U0" if image is uncompressed, "C1" if image is compressed

number of lines in the image file

number of bytes per line

number of bits per pixel

number of label record

type of image file - set to 0 0 0

user text - image title

Figure 6b describes the image portion of the image file. One record is equivalent to one scan

line. Therefore, the image file format is similar to the manner in which pixels are laid over a

monitor.

The RICE simulator processes one record at a time. Each record is broken into 16-pixel

blocks. If a record is does not contain a multiple of 16 pixels, the last block is zero-filled.

Therefore, for each scan line input to the RICE simulator, one reference pixel is output followed

by 16 concatenations of (28) where n is the number of bits/pixel. In other words, the split-

sample encoder has 16 opportunities per scan line to adjust to changing data statistics. A block

diagram of the RICE simulator is shown in Figure 7.

Pixels on the same scan line of image data are highly correlated. For example, adjacent

pixels are usually about the same color and intensity.

The purpose of the reversible preprocessing in Figure 7 is to alter the source symbols

(pixels) such that (3) is well approximated. The probability ordering in (3) is achieved by using

a priori information. In the case of a pixel, this a priori information is the previous pixel, or

39

[_ge NoiseLess Encoder

I I

[Rage Revers lb(e PreprocesslnO

Predictive
Decorret_lon

I 1

, + :
' L_ 3-I I
I I
I /

A

Pr_dicelon
ErPor

---7
I

In_rs; I
I
1

0 0 _ ;
1 1

2 3
-2 4
3 5
-3 6

i

i

7

Encoder

ICoded
I Plxets

ReFerence
Plxel

b

Figure 7. Block Diagram of the RICE Simulator.

reference pixel. The predictive decorrelator in Figure 7 subtracts the previous pixel from the

current pixel, yielding a difference value, A. Since adjacent pixels are approximately equal, the

most likely values for I,Xlare close to zero. Therefore, the mapping in Figure 6 outputs integers

(8's) whose probability ordering matches the condition in (3).

Table 3.

This mapping is outlined in

The _5 values are well conditioned for split-sample encoding because they are

mostly low in magnitude. Therefore, their MSB's will contain significant redundancy and their

LSB's will be somewhat random.

40

A Condition 8 Assignment

0 < A < previous pixel 2_

A > previous pixel pixel value

(previous pixel - maximum) < A < 0 2[AJ-1

(previous pixel - maximum) > A > 0 maximum - pixel value

Table 3. A_8 Mapping Rules.

Note that first pixel from each scan line, the reference pixel, is sent uncoded. At the

decompressor, the reference pixel is used in conjunction with the 8 values to reconstruct the scan

line.

The compressed image file output from the RICE simulator is described in Figure 8. The

header for the compressed file is the same as Figure 6a. Clearly, each record of compressed data

will be variable in length. Therefore, the number of bytes for each compressed scan line is stored

at the beginning of each record. The reference pixel will be used with the decoded series of 8

nil

Lines

[nby±e_pock JreFerence lID [16 SS-code plxetsJ'

, i

liD116S -co ep,xelsI

JID J16 SS-code p,xetsJ

Figure 8. Compressed Image File Format.

41

values to reconstruct the original scan line.

The ID bits tell the decompressor how many LSB's (k) where split from the original

pixel. Note that the ID bits say nothing about the length of the FS encoded MSB's. An example

of a split-sample encoded pixel is shown in Figure 9.

LoL0101011111011111110L
FS[MSB's] LSB's

Figure 9. Typical S_lit-Sample Encoded Pixel.

As the RICE decompressor simulator reads the compressed image file from left to right,

it must have some way of knowing where the encoded MSB's begin and end and where the

LSB's begin and end. After the ID bits are read, the simulator will begin reading the FS encoded

MSB's. As soon as the simulator reads a "1", it assumes that this is the end of the FS encoded

MSB's and the next k bits are the LSB's for the current 5. This 5 decompression is repeated 15

more times (remember, the 5's were encoded in 16-integer blocks), then the next ID is read and

the process repeats until nbyte_pack bytes have been read in. Once all the 5 values have been

decompressed, they will be used with the reference pixel to reconstruct the original scan line.

The decompressor repeats all of this until nli lines have been processed.

4.1 RICE/CLEAN INTEGRATION

Programs called img2seq and seq2img provide the interface between JPL's RICE

compression code and MSU's CLEAN code. Img2seq converts the RICE image file format to

42

the CLEAN sequencefile format. Conversely, seq2img converts the CLEAN sequence file

format to the RICE image file format. Both programs work for compressed or uncompressed

formats. The image header data from record 1 of the image file is stored on records 60-100 in

the sequence f'de. The image data starts on record 101 of the sequence file.

The RICE/CLEAN integration exists to study the effects of a noisy channel on RICE

decompression. Clearly, from Figure 9, errors in the LSB's will only result in pixel distortion.

However, errors in the ID bits or FS encoded MSB's will may the decompressor to overlap the

FS encoded MSB's with the LSB's. Consequently, synchronization of the FS encoded MSB's,

LSB's, and ID bits would be lost. Block loss, or even line loss could occur. In other words,

errors in the appropriate positions would cause "error propagation" in the decoded pixels.

5.0 CONCLUSION

RICE compression performs quite well over a broad entropy range. However, the effects

of noise on the decompressor output are still relatively unknown. The following questions about

RICE need to be answered. Do errors output from inner error-correction codes cause catastrophic

errors output from the RICE decompressor? If so, and extra error-correction encoding is needed,

what is the net coding gain Will error propagation occur? If so, how is it stopped in real systems?

Does error propagation really matter? What error statistics are important: pixel distortion, block

loss, line loss, etc.?

43

6.0 BIBLIOGRAPHY

[1] "Universal Source Encoder for Space - USES", MRC NASA Space Engineering Research

Center Publication, pp. 1-27.

[2] Jack Venbrux and Norley Liu, "Lossless Image Compression Chip Set", Proceedings of

Northcon, Seattle, WA, 1990, pp 145-150.

[3] Pen-Shu Yeh, Robert Rice, Wanrer Miller, "On the Optimality of Code Options for a
Universal Noiseless Coder", JPL Publication, February 1991, pp. 1-44.

[4] Robert Rice, "Some Practical Universal Noiseless Coding Techniques", JPL Publication,

March 1979, pp. 1-119.

[5] Robert Rice and Jun-Ji, "Some Practical Universal Noiseless Coding Techniques, Part II",

JPL Publication, March 1983, pp. 1-56.

[6] R.E. Ziemmer and W.H. Tranter, Principles of Communications, 3 '_ Ed., Houghton Miffin

Co., 1990, pp. 696-698.

[7] D. Spencer and C. May, "Data Compression for Earth Resource Satellites", Proceedings of

the 1972 1TC Conference, October, 1972.

44

BIBLIOGRAPHY

1. W. Miller, "TRMM Performance in RFI without the PCI," NASA Goddard, Code 738.3,

December 16, 1993.

2. T. Kaplan and T. Berman, "Performance of TRMM Communications in RFI With and
Without the PCI," Stanford Telecom, Code 531.1, December 22, 1993.

3. T.M. McKenzie, H. Choi, and W.R. Braun, "Documentation of CLASS Computer Program

for Bit Error Rate with RFr', LinCom, TR-0883-8214-2, August 1982.

4. W. Turin, PerformgnCe Analysis of Digital Transmission Systems. New York: Computer
Science Press, 1990.

. Ebel, W.J., and Ingels, F.M., "An Investigation of Error Characteristics and Coding

Performance", MSU Department of Electrical and Computer Engineering, Technical

Semi-Annual Report, December 30, 1993, NASA Grant NAG5-2006.

